Nordsee-Seezunge
gültig 06/2012 - 06/2013
Zum aktuellen Bestandsdatenblatt
Zugehörige Fischart
Archiv
Allgemeine Informationen
Ökoregion: | Nordsee |
Fanggebiet: | Nordsee (4) FAO 27 |
Art: | Solea solea |
Wissenschaftliche Begutachtung
Internationaler Rat für Meeresforschung (ICES), Kopenhagen, www.ices.dk
Methode, Frequenz
Jährliche analytische Bestandsberechnung mit Vorhersage unter Verwendung von Anlandedaten und zweier unabhängiger wissenschaftlicher Forschungsreisen. Rückwürfe gehen nicht in die Bestandsberechnungen ein. Die Referenzwerte nach dem Konzept des höchsten Dauerertrages (MSY) sind definiert (Fmsy, Btrigger). Nach dem Vorsorgeansatz sind nur drei von vier Referenzpunkten festgelegt. Sie alle basieren auf der Biomasse-Nachwuchs-Relation. Diese Bestandsberechnung ist eher unsicher. [490] [491]
Wesentliche Punkte
2012: Der Bestand liegt nach Vorsorgeansatz weiterhin im grünen Bereich. Die fischereiliche Sterblichkeit konnte erneut gesenkt werden, ist aber nach dem MSY-Konzept noch immer zu hoch. Die Laicherbiomasse ist weiter gestiegen. Die Rückwurfmenge von Schollen in der gemischten Plattfisch-Fischerei ist unverändert hoch. [490] [491]
Bestandszustand
Laicherbiomasse (Reproduktionskapazität) |
---|
volle Reproduktionskapazität (nach Vorsorgeansatz) |
innerhalb der Schwankungsbreite um den Zielwert (nach Managementplan) |
innerhalb der Schwankungsbreite um den Zielwert (nach höchstem Dauerertrag) |
Fischereiliche Sterblichkeit |
---|
nachhaltig bewirtschaftet (nach Vorsorgeansatz) |
innerhalb der Schwankungsbreite um den Zielwert (nach Managementplan) |
übernutzt (nach höchstem Dauerertrag) |
Bestandsentwicklung
Die Nachwuchsproduktion dieses Bestandes ist sehr variabel, daher schwankt auch die Laicherbiomasse stark. Der Bestand war in den frühen 1960er Jahren und Anfang der 1990er Jahre am größten und 2007 am kleinsten. Die fischereiliche Sterblichkeit stieg zwischen Anfang der 1960er und 1997 fast stetig. Laicherbiomasse und Anlandungen der letzten Jahre wurden von dem starken Jahrgang 2005 dominiert, der nun aber langsam abnimmt. Der 2009er Jahrgang liegt ebenfalls über dem Mittelwert und wächst 2012 in die Laicherbiomasse ein. Erst seit der Einführung eines EU-Managementplans 2006 sinkt die fischereiliche Sterblichkeit deutlich und liegt seit 2008 unter dem Vorsorge-Referenzpunkt. [490] [491]
Ausblick
Die eher überdurchschnittliche Nachwuchsproduktion der letzten Jahre wird den Bestand langsam anwachsen lassen. Der Managementplan sieht eine weitere Senkung der fischereilichen Sterblichkeit vor, bis sie Fmsy entspricht. Die Fangmengen werden daher kurzfristig weiter reduziert werden müssen. Bei einer Bewirtschaftung unter Berücksichtigung des Auftretens verschiedener Arten in gemischten Fischereien wäre allerdings eine stärkere Senkung der Fangmengen nötig, um Bestände in einem schlechteren Zustand, wie den Nordsee-Kabeljau, zu schonen. [10] [490]
Umwelteinflüsse auf den Bestand
Die seit 1989 ansteigende Wassertemperatur in der südlichen Nordsee führt bei der Seezunge zu höheren Wachstumsraten und zur Verlängerung der Wachstumsperiode. Als südliche Art lebt sie in der Nordsee an ihrer nördlichen Verbreitungsgrenze. Die Seezunge ist sehr kälteempfindlich und verbringt die Winter in wärmerem Tiefenwasser. Sehr kalte Winter können sich negativ auf den Bestand auswirken. In der Zeit hoher Nährstoffeinleitungen (vor allem durch den Rhein) stiegen die Wachstumsraten der Nordsee-Seezunge. [2] [25] [32] [33] [60]
Wer und Wie
Das Management erfolgt faktisch seit 2006, formell seit 2008 nach einem EU-Langzeit-Managementplan, gemeinsam für Scholle und Seezunge, die unvermeidlich zusammen gefangen werden. Dieser Plan wurde vom ICES 2010 positiv bewertet (als in Übereinstimmung mit dem Vorsorgeansatz) und ist nun Basis für die wissenschaftliche Fangempfehlung. Nach der abgeschlossenen Erholungsphase sollen die Bestände im Folgenden nach dem Konzept des höchstmöglichen Dauerertrags (MSY) bewirtschaftet werden. Der Übergang in diese 2. Phase muss aber vom Ministerrat beschlossen werden und erfordert die Änderung einiger Artikel des Managementplanes, was bisher nicht erfolgt ist. [10] [380] [490]
Differenz zwischen Wissenschaft und Management
Über viele Jahre wurde die legale Höchstfangmenge (TAC) oberhalb der wissenschaftlichen Empfehlung festgesetzt. Seit 2009 decken sich die auf dem Managementplan basierende wissenschaftliche Empfehlung und beschlossener TAC. Der TAC 2011 wurde nicht ausgefischt. [10] [490]
Karten
Verbreitungsgebiet
Managementgebiet
Nordsee-Seezunge ist im ICES Gebiet IV verbreitet. Die Höchstfangmenge (TAC) wird für die Nordsee (nur EU-Gewässer von ICES-Gebiet IV) und die EU-Gewässer von ICES-Gebiet II festgelegt. Verbreitungs- und Managementgebiet stimmen überein. [380] [490]
Anlandungen und TACs (in 1.000 t)
Gesamtfang | 2011: Anlandungen: 11,5; davon Baumkurre 83%, Kiemen- und Trammelnetze 13%, Scherbrettschleppnetze 4% |
TACs | 2007: 15,0 2008: 14,5 2009: 14,0 2010: 14,1 2011: 14,1 2012: 16,2 [380] [490] [492] |
IUU-Fischerei
Seit 2002 liegen die unberichteten Fänge aus diesem Bestand bei etwa 5%. [490]
Struktur und Fangmethode
Das vorwiegend zum Plattfischfang in der Nordsee eingesetzte Gerät ist die Baumkurre, ein Schleppnetz an einem stählernen Rahmen, das mit Kufen direkt auf dem Grund aufsetzt. Um die oft im Boden eingegrabenen Plattfische aufzustören, läuft vor der eigentlichen Netzöffnung ein Satz stählerner Ketten (Scheuchketten). Diese Technik hat sich seit den 1950er Jahren, von den Niederlanden ausgehend, in vielen Anrainerstaaten durchgesetzt. Der enge Kontakt des Fanggeschirrs mit dem Grund bedingt einen hohen Schleppwiderstand. Die hohen Treibstoffkosten haben zu einer Abnahme des Aufwandes geführt (oder zur Umrüstung von Baumkurren auf Scherbrettnetze oder Snurrewaden), und die Entwicklung treibstoffsparender Fangmethoden gefördert. So haben einige, vor allem niederländische Fahrzeuge im letzten Jahr auf Baumkurren mit weniger Bodenkontakt umgerüstet, bei denen Ketten durch Scheuchelektroden (Pulse trawl) oder gezielte, feine Wasserströme (Wingsum) ersetzt werden. [2] [30] [490] [491]
Beifänge und Rückwürfe
Die Fischerei ist gemischt und fängt gleichzeitig mehrere Plattfischarten, vor allem Seezunge und Scholle. Da die Seezunge die höchsten Anlandepreise erzielt, gilt sie für die Fischerei als Hauptzielart. Für deren Fang sind wegen ihres schlankeren Körperbaus enge Netzmaschen erforderlich, die unweigerlich auch kleine Schollen und Kabeljau mitfangen. Diese Fische werden überwiegend verworfen. In den letzten Jahren gibt es auch Hinweise auf steigende Rückwürfe von Seezungen. Rückwürfe von Scholle und Seezunge haben Überlebensraten von unter 10%. Die Aufwandsregulierung (Tage auf See), hohe Treibstoffpreise und die unterschiedliche Veränderung der Höchstfangmengen von Scholle und Seezunge haben den Fischereiaufwand insbesondere der großen niederländischen Flotte in die südliche Nordsee verlagert. Das verstärkt die Beifang-Problematik, da hier das Hauptverbreitungsgebiet junger Schollen ist. Größere Maschenweiten würden die Beifänge, aber auch den Anteil marktfähiger Seezungen stark verringern. [235] [490] [491]
Einflüsse der Fischerei auf die Umwelt
Da die Baumkurren auf dem Grund geschleppt werden, und die Scheuchketten einige cm tief eindringen können, werden regelmäßig (abhängig vom Fanggrund) größere Mengen an bodennah lebendem Meeresgetier mitgefangen, sowohl Fische als auch Wirbellose. Diese sind als Rückwürfe vielfach nicht überlebensfähig. Insbesondere die Baumkurrenfischerei kann Artenzusammensetzung, Biomasse und Nahrungsgefüge im befischten Gebiet erheblich verändern. Diese Fangmethode ist außerdem sehr energieaufwändig. Baumkurrenfischerei ist die Fangmethode mit dem größten unmittelbaren Einfluss auf die Meeresumwelt. Die Auswirkungen der Scherbrett- und Snurrewadenfischerei sind geringer. Pulse trawls sind noch in der Erprobung, über deren Umweltauswirkungen lassen sich derzeit noch keine fundierten Aussagen machen. Innerhalb einzelner Arten kann die Größenselektion des Fanggerätes zu einer Verschiebung der Reife kommen. In den letzten Jahren erreichen jüngere und kleinere Schollen und Seezungen die Geschlechtsreife. [7] [8] [30] [490] [491]
Biologische Besonderheiten
Der Seezungenbestand hängt stark vom gelegentlichen Vorkommen besonders starker Jahrgänge ab. Die jüngsten Stadien bleiben etwa 2 Jahre in den Aufwuchsgebieten, bevor sie in tieferes Wasser wandern. Seezungen sind nachtaktiv, dadurch werden sie nachts leichter gefangen als bei Tageslicht. [2] [26] [490] [491]
Zusätzliche Informationen
Ein Streifen entlang der holländischen, deutschen und dänischen Küste ist für größere Baumkurrenfahrzeuge (mit mehr als 221 kW Maschinenleistung) gesperrt, um Jungfische zu schonen (Schollenbox). Seit ihrer Einrichtung wurde hier keine Veränderung im Anteil untermassiger Seezungen festgestellt. [24] [490] [491]
Zertifizierte Fischereien
Zwei Seezungenfischereien in der Nordsee sind nach den Standards des Marine Stewardship Councils zertifiziert (ca. 3-4 % der Anlandungen). Eine weitere Fischerei ist im Bewertungsprozess. [4]
Soziale Aspekte
Die gemischte Plattfischfischerei in der Nordsee wird überwiegend mit kleineren Fahrzeugen durchgeführt. Diese Fischereibetriebe haben erhebliche Bedeutung für die strukturschwachen Gebiete an den Küsten der Anrainerstaaten. Die Fahrzeuge fahren unter den Flaggen der Anrainerstaaten, die Arbeitsbedingungen an Bord und die Entlohnung erfolgt daher nach deren Regeln. Hauptfangnation sind die Niederlande. Obwohl Seezunge sehr wertvoll ist, wurde die Höchstfangmenge 2011 nicht ausgefischt. Eine Ursache ist, dass ein Teil der niederländischen Flotte auf „Pulse trawls“ (Schleppnetze mit Impulsstrom) umgerüstet wurde und in dieser Zeit nicht gefischt hat. [12] [13] [490]
Autor | Jahr | Titel | Quelle | |
---|---|---|---|---|
[2] | Muus BJ, Nielsen JG | 1999 | Die Meeresfische Europas | Franckh-Kosmos Verlag |
[4] | Marine Stewardship Council (MSC) | Fisch und Meeresfrüchte aus zertifiziert nachhaltiger Fischerei | msc.org | |
[7] | Kaiser MJ, Ramsay K, Ramsay K, Richardson CA, Spence FE, Brand AR | 2000 | Chronic fishing disturbance has changed shelf sea benthic community structure | Journal of Animal Ecology 69:494-503 |
[8] | Hiddink JG, Jennings S, Kaiser MJ, Queirós AM, Duplisea DE, Piet GJ | 2006 | Cumulative impacts of seabed trawl disturbance on benthic biomass, production, and species richness in different habitats | Canadian Journal of Fisheries and Aquatic Sciences 63:721-736 |
[10] | Europäische Union (EU) | 2007 | Verordnung (EG) 676/2007 des Rates zur Einführung eines Mehrjahresplans für die Fischereien auf Scholle und Seezunge in der Nordsee | europa.eu |
[12] | Europäische Gemeinschaften | 2009 | Die Gemeinsame Fischereipolitik. Ein Leitfaden für Benutzer | ec.europa.eu |
[13] | Bundesanstalt für Landwirtschaft und Ernährung (BLE) | Bundesanstalt für Landwirtschaft und Ernährung (BLE) Homepage | ble.de | |
[14] | Fisch-Informationszentrum e.V. (FIZ) | Fisch-Informationszentrum e.V. Homepage | fischinfo.de | |
[24] | Pastoors MA, Rijnsdorp AD, van Beek FA | 2000 | Effects of a partially closed area in the North Sea (\"plaice box\") on stock development of plaice | ICES J Mar Sci 57:1014-1022 |
[25] | Burt GJ , Millner RS | 2008 | Movements of sole in the southern North Sea and eastern English Channel from tagging studies (1955 2004) | Cefas Lowestoft, Sci Ser Tech Rep 144:44pp |
[26] | Rijnsdorp AD, Van Beek FA, Flatman S, Millner RM, Riley JD, Giret M, De Clerck R | 1992 | Recruitment of sole stocks, Solea solea (L.), in the northeast Atlantic | Netherlands Journal of Sea Research 29:173 192 |
[30] | Food and Agriculture Organization (FAO) | FAO. © 2003-2010. Fisheries Topics: Technology. Fish capture technology. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 2006 15 09.[Cited 10 June 2010] | fao.org | |
[32] | Woodhead, P.M.J. | 1964 | The death of North Sea fish during the winter of 1962/1963, particularly with reference to the sole, Solea vulgaris, during cold winters, and the relation between the winter catch and sea temperatures | Helgoländer Wissenschaftliche Meeresuntersuchungen 10:283-300 |
[33] | Rijnsdorp AD, Peck MA, Engelhard GH, Möllmann C, Pinnegar JK | 2009 | Resolving the effect of climate change on fish populations | ICES Journal of Marine Science 66:1570-1583 |
[60] | Teal LR, de Leeuw JJ, van der Veer HW, Rijnsdorp AD | 2008 | Effects of climate change on growth of 0-group sole and plaice | Marine Ecology Progress Series 358:219–230 |
[235] | Beek FA van, Leeuwen PI van, Rijnsdorp AD | 1990 | On the survival of plaice and sole discards in the otter-trawl and beam-trawl fisheries in the North Sea. | Netherlands Journal of Sea Research 26: 151-160 |
[380] | Europäische Union | 2012 | Verordnung (EU) Nr. 44/2012 des Rates vom 17. Januar 2012 zur Festsetzung der Fangmöglichkeiten im Jahr 2012 in EU-Gewässern und für EU-Schiffe in bestimmten Nicht-EU-Gewässern für bestimmte, über internationale Verhandlungen und Übereinkünfte regulierte Fischbestände und Bestandsgruppen | europa.eu |
[490] | ICES | 2012 | Report of the Advisory Committee, 2012. Book 6. North Sea. 6.4.10. Sole in Subarea IV (North Sea) | ices.dk |
[491] | ICES | 2012 | Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK), 27 April - 3 May 2012, ICES Headquarters, Copenhagen. ICES CM 2012/ACOM:13. 19 pp. 10 Sole in Subarea IV | ices.dk |
[492] | Europäische Gemeinschaft (EG) | 2008 | Verordnung (EG) Nr. 541/2008 der Kommission vom 16. Juni 2008 zur Anpassung bestimmter Fangquoten für 2008 gemäß der Verordnung (EG) Nr. 847/96 des Rates zur Festlegung zusätzlicher Bestimmungen für die jahresübergreifende Verwaltung der TAC und Quoten | europa.eu |