Nordsee-Scholle
gültig 06/2018 - 06/2019
Zum aktuellen Bestandsdatenblatt
Zugehörige Fischart
Archiv
Allgemeine Informationen
Ökoregion: | Nordsee |
Fanggebiet: | Kattegat/Skagerrak (3.a), Nordsee (4) FAO 27 |
Art: | Pleuronectes platessa |
Wissenschaftliche Begutachtung
Internationaler Rat für Meeresforschung (ICES), Kopenhagen
Methode, Frequenz
Jährliche analytische Bestandsberechnung mit Vorhersage unter Verwendung von Anlande- und Rückwurfdaten (letztere seit 2000) und sechs unabhängiger wissenschaftlicher Forschungsreisen, die nur erwachsene Tiere erfassen. Alle vier Referenzwerte nach dem Vorsorgeansatz sind definiert, sie basieren auf der Biomasse-Nachwuchs-Relation. Die Referenzwerte nach dem Konzept zur Erlangung des höchstmöglichen nachhaltigen Dauerertrages (MSY) sind ebenfalls festgelegt (Fmsy, MSY-Btrigger). Die Bestandsberechnung ist unsicher, u.a. wegen des hohen Anteils an Rückwürfen am Gesamtfang. Durch die neue Definition des Bestandes (Scholle in der Nordsee und im westlichen Skagerrak wurden 2015 zusammengelegt) konnte die Qualität der Berechnung verbessert werden. [1076] [1090]
Wesentliche Punkte
2018: Der Bestand liegt bezüglich aller Biomasse-Referenzwerte weit im grünen Bereich. Die Biomasse wächst noch immer an und war in der bis 1956 zurückreichenden Zeitserie nie höher als 2018. Der Fischereidruck liegt seit 2010 knapp unter, bzw. auf Fmsy. Dieser Bestand zählt zu den EU-Beständen, die bereits nach dem anspruchsvollen MSY-Konzept bewirtschaftet werden. Ab August 2018 ist ein neuer Mehrjahresplan für Grundfischbestände in der Nordsee und für die Fischereien, die diese Bestände befischen, in Kraft. [1076] [1084] [1090]
Bestandszustand
Laicherbiomasse (Reproduktionskapazität) |
---|
volle Reproduktionskapazität (nach Vorsorgeansatz) |
innerhalb der Schwankungsbreite um den Zielwert (nach Managementplan) |
innerhalb der Schwankungsbreite um den Zielwert (nach höchstem Dauerertrag) |
Fischereiliche Sterblichkeit |
---|
nachhaltig bewirtschaftet (nach Vorsorgeansatz) |
innerhalb der Schwankungsbreite um den Zielwert (nach Managementplan) |
angemessen (nach höchstem Dauerertrag) |
Bestandsentwicklung
Nach einer stetigen Ausweitung der Fischerei nach dem 2. Weltkrieg erreichten die Erträge in den 1980er Jahren ihr Maximum. Die fischereiliche Sterblichkeit nahm stetig zu, gleichzeitig ließ die Nachwuchsproduktion nach. In der Folge sanken Biomasse und Erträge schnell. Die fischereiliche Sterblichkeit erreichte 1998 das Maximum, konnte danach aber erheblich reduziert werden. Seit 2006 liegt sie ununterbrochen unter dem Vorsorgereferenzwert (Fpa) und seit 2010 auch unter dem Referenzwert zur Erlangung des höchstmöglichen nachhaltigen Dauerertrages (Fmsy). Der grau schattierte Bereich in der Grafik zeigt die Spanne der Referenzwerte des neuen Managementplanes (höchster und niedrigster Wert). Die Biomasse wächst seit 2005 stetig und erreicht 2018 den höchsten Wert seit Beginn der Aufzeichnung. Sie liegt damit weit über allen Referenzwerten. Die Nachwuchsproduktion liegt seit Mitte der 1990er Jahre im Rahmen des Langzeitmittels. [1076] [1084] [1090]
Ausblick
Die Fangmengen werden sich in Abhängigkeit vom zukünftigen Bewirtschaftungskonzept entwickeln. Die Bewirtschaftung nach dem Konzept zur Erlangung des höchstmöglichen nachhaltigen Dauerertrages (MSY) erlaubt höhere Fänge als sie derzeit getätigt werden. [1076] [1090]
Umwelteinflüsse auf den Bestand
Scholle gehört zu den borealen (nördlichen) Fischarten. Schwankungen und Trends in der Nachwuchsproduktion sind daher mit hoher Wahrscheinlichkeit klimabedingt, ebenso eine Verschiebung des Verbreitungsgebietes junger Schollen in tieferes Wasser. Für das Überleben im empfindlichen Larvenstadium und eine erfolgreiche Ansiedlung im Watt müssen Wetter- und Strömungsbedingungen günstig sein. Kalte Winter verbessern die Aussicht auf einen starken Nachwuchsjahrgang. [33] [61] [1076] [1090]
Wer und Wie
Die Bewirtschaftung erfolgt gemeinsam durch die Europäische Union und Norwegen. Die Parteien einigen sich in der Regel auf gemeinsame Höchstfangmengen in den einzelnen Managementgebieten (festgelegt in den agreed records of fisheries consultations). Nach der neuen Definition des Bestandes (2015: Zusammenlegung Nordsee und westliches Skagerrak) hatten die EU und Norwegen Schwierigkeiten, die Empfehlung auf die nun zwei Managementgebiete aufzuteilen. Die Höchstfangmengen (TACs) für 2016, 2017 und 2018 wurden daher nicht auf Basis des Managementplanes festgelegt, sondern die Vorjahres-TACs modifiziert. Für 2017 wurde beschlossen, dass der TAC im Skagerrak 11,8% der erlaubten Fangmenge aus dem Bestand betragen soll. Ab August 2018 ist ein neuer EU-Mehrjahresplans für Grundfischbestände in der Nordsee (MAP) in Kraft. Die Referenzwerte entsprechen dem Konzept des höchstmöglichen Dauerertrages (MSY), mit einer Spanne um Fmsy. Der Plan ist bisher nicht von Norwegen angenommen, der ICES wurde daher von der EU-Kommission aufgefordert, die Fangempfehlung auf Basis des höchstmöglichen Dauerertrags (MSY) zu geben. Die Bewirtschaftung erfolgt außerdem über technische Maßnahmen (z.B. Maschenöffnnungsregulierungen, Referenzmindestgrößen für die Bestandserhaltung und Gebietsschließungen (siehe dazu auch unter „Zusätzliche Informationen“). Ein Teil der Fänge aus diesem Bestand fällt seit Januar 2016 unter das Anlandegebot der EU. [39] [631] [750] [1056] [1065] [1076] [1084] [1090]
Differenz zwischen Wissenschaft und Management
Zwischen 2003 und 2008 wurde die legale Höchstfangmenge (TAC) für die Nordsee erheblich oberhalb der wissenschaftlichen Anlande-Empfehlung festgesetzt. Seit 2009 decken sich die auf dem Managementplan basierende wissenschaftliche Empfehlung und beschlossener TAC. Seit 2016 gilt die wissenschaftliche Empfehlung (nun bezogen auf den Fang) für den neu definierten Bestand, der in zwei Managementgebieten verbreitet ist. Die daher geltenden zwei Höchstfangmengen (TACs) müssen für den Vergleich summiert werden. Für 2016 erschien eine Managementplan-basierte Erhöhung (+15%) nicht adäquat, da der Plan sich nur auf die Nordsee bezog und das Ziel für die fischereiliche Sterblichkeit (F) im Vergleich zu Fmsy hoch war. Der TAC in der Nordsee wurde daher nur um 2,7%, der im Skagerrak um 17% erhöht. Die Summe der beiden TACs blieb damit unter der wissenschaftlichen Fang-Empfehlung. Auch 2017 und 2018 wurde eine Modifizierung des TACs vorgenommen und die Summe blieb wieder unter der Empfehlung. Die Anlandungen liegen seit 2002 im Rahmen der TACs, in den letzten Jahren erheblich darunter. [1041] [1076] [1090]
Karten
Verbreitungsgebiet
Managementgebiet
Nordsee-Scholle ist in zwei Managementgebieten verbreitet: Der Nordsee (ICES-Gebiet 4) und dem Skagerrak (Gebiet 3.a.20). Außerdem gibt es einen Austausch mit dem östlichen Ärmelkanal (Gebiet 7.d), in dem vor allem im ersten Quartal Schollen aus dem Nordsee-Bestand gefangen werden. Es werden zwei Höchstfangmengen (TACs) festgelegt: Eine für die gesamte Nordsee (inklusive EU-Gewässer von ICES-Gebiet 2.a) und eine für das gesamte Skagerrak. Die beiden Managementgebiete decken das Verbreitungsgebiet dieses Bestandes ab. [1041] [1076]
Anlandungen und TACs (in 1.000 t)
Gesamtfang | 2017 (Nordsee und Skagerrak): 113,2 (Anlandungen: 74,2; Rückwürfe und Anlandungen unter der Mindestgröße: 39,0); von den Anlandungen: Baumkurre 53%, Grundscherbrettnetze 36%, andere 11% |
TACs (Nordsee/Skagerrak (ab 2016) (Summe)) | 2008: 49,0 2009: 55,5 2010: 63,8 2011: 73,4 2012: 84,4 2013: 97,1 2014: 111,6 2015: 128,4 2016: 131,7/11,8 (143,5) 2017: 129,9/17,6 (147,6) 2018: 112,6/15,3 (128) [1041] [1076] |
IUU-Fischerei
Die für die Nordsee (ICES-Gebiet 4) gemeldeten Anlandungen unter der Mindestgröße (BMS) von Flotten, die dem Anlandegebot unterliegen, sind derzeit erheblich geringer als die mit Hilfe von Beobachterprogrammen ermittelten Rückwurfmengen. Fänge von Scholle aus der Nordsee, die nicht zugeordnet werden können („unallocated“), lagen in den letzten 20 Jahren bei unter 4% der Anlandungen. 2010 stieg dieser Anteil auf 16%, ist in den letzten Jahren aber offenbar wieder stark gesunken. [1076] [1090]
Struktur und Fangmethode
Scholle wird vor allem mit Baumkurren in einer gemischten Plattfisch-Fischerei in der südlichen und zentralen Nordsee gefangen. Diese Technik hat sich seit den 1950er Jahren, von den Niederlanden ausgehend, in vielen Anrainerstaaten durchgesetzt. Der enge Kontakt des Fanggeschirrs mit dem Grund bedingt einen hohen Schleppwiderstand. Die gestiegenen Treibstoffkosten haben zu einer Abnahme des Aufwandes geführt (oder zur Umrüstung von Baumkurren auf Scherbrettnetze oder Snurrewaden), und die Entwicklung treibstoffsparender Fangmethoden gefördert. So haben einige, vor allem niederländische Fahrzeuge in den letzten Jahren auf Baumkurren mit weniger Bodenkontakt umgerüstet, bei denen Ketten durch Scheuchelektroden (Pulsbaumkurren, „Pulse trawl“) oder gezielte, feine Wasserströme („Wingsum“, „Hydroriggs“) ersetzt sind. In der zentralen Nordsee findet eine gerichtete Fischerei mit verschiedenen Grundschleppnetzen sowie mit Kiemennetzen statt. In der Scherbrettfischerei geht die Entwicklung zu „Twin riggs“; sie bestehen aus zwei Netzen und sind leichter als herkömmliche Grundschleppnetze. [2] [4] [30] [1076] [1090]
Beifänge und Rückwürfe
Rückwürfe von quotierten Arten sind in Norwegen verboten. In EU-Gewässern der Nordsee (Gebiete 3.a.20-21 und 4) ist der Rückwurf von Scholle aus der Fischerei mit diversen Schleppnetzen mit Maschenöffnung größer 100mm und Baumkurren mit Maschenöffnung größer 120mm seit Januar 2016 ebenfalls verboten. Seit Januar 2018 unterliegen auch Fänge mit Haken und Leinen sowie mit Fallen (mit Ausnahmen wegen hoher Überlebensraten) dem Anlandegebot. Für die übrigen, kleinmaschigeren Fischereien (z.B. Baumkurre mit 80-120mm), die für einen Großteil der Fänge und Rückwürfe verantwortlich sind, gilt für Scholle bis spätestens Ende 2018 nur ein Verbot des „highgradings“ (Rückwurf legal anlandbarer Fische). Durch Fraß beschädigter Fisch ist vom Anlandegebot ausgenommen. Die Fischerei ist vor allem in der südlichen Nordsee „gemischt“ und fängt gleichzeitig mehrere Plattfischarten, vor allem Seezunge und Scholle. Da die Seezunge die höchsten Anlandepreise erzielt, gilt sie für die Fischerei als Hauptzielart. Für deren Fang sind wegen ihres schlankeren Körperbaus enge Netzmaschen erforderlich (z.Zt. 80 mm Maschenöffnung), die unweigerlich auch kleine Schollen und Rundfische mitfangen. Der Rückwurf von Schollen lag 2012-2017 zwischen 42% und 32% des Gesamtfanges nach Gewicht (2017: 34%). Die sogenannten „unerwünschten Fänge“ fassen nun Rückwürfe und Anlandungen unter der Mindestgröße (BMS) zusammen. Die für ICES-Gebiet 4 gemeldeten BMS-Anlandungen (2017: 5 t) von Flotten, die dem Anlandegebot unterliegen, sind derzeit aber erheblich geringer als die mit Hilfe von Beobachterprogrammen ermittelten Rückwurfmengen. Rückwürfe von Scholle und Seezunge in Schleppnetzfischereien haben im Mittel Überlebensraten von vermutlich unter 10%. Die Aufwandsregulierung (Tage auf See), hohe Treibstoffpreise und die unterschiedliche Entwicklung der Höchstfangmengen von Scholle und Seezunge haben den Fischereiaufwand insbesondere der großen niederländischen Flotte in die südliche Nordsee verlagert. Das verstärkt die Beifang-Problematik, da hier das Hauptverbreitungsgebiet junger Schollen ist. Größere Maschenöffnungen in der südlichen Nordsee würden die Beifänge junger Schollen, aber auch den Anteil marktfähiger Seezungen stark verringern. [4] [235] [750] [979] [1056] [1076] [1090]
Einflüsse der Fischerei auf die Umwelt
Da die Baumkurren auf dem Grund geschleppt werden und die Scheuchketten einige cm tief eindringen können, werden regelmäßig (abhängig vom Fanggrund) größere Mengen an bodennah lebendem Meeresgetier mitgefangen, sowohl Fische als auch Wirbellose. Diese sind als Rückwürfe meist nicht überlebensfähig. Insbesondere die Baumkurrenfischerei kann Artenzusammensetzung, Biomasse und Nahrungsgefüge im befischten Gebiet erheblich verändern. Diese Fangmethode ist außerdem sehr energieaufwändig. Baumkurrenfischerei ist eine der legalen Fangmethoden mit dem größten unmittelbaren Einfluss auf die Meeresumwelt. Die Auswirkungen der Scherbrett- und Snurrewadenfischerei sind geringer. Der Einfluss hängt von Fangmethode und Bodenstruktur ab. Auf sandigem Boden hat eine Studie in den USA nur einen geringen Einfluss durch Grundscherbrettnetze feststellen können. So waren zwar die Spuren der Scherbretter lange sichtbar (mindestens 1 Jahr), es konnten aber kaum signifikante Unterschiede in der Mikrotopographie der befischten und unbefischten Gebiete nachgewiesen werden. Auch bei strukturformenden und mobilen Wirbellosen zeigten befischte und unbefischte Gebiete keine signifikanten Unterschiede. „Twin riggs“ sind leichter als herkömmliche Grundschleppnetze und haben keine Scheuchketten, der Einfluss auf den Meeresboden wird dadurch reduziert. Pulsbaumkurren („Pulse trawls“) sind noch in der Erprobung, nach aktuellen Erkenntnissen sind deren Umweltauswirkungen geringer als die herkömmlicher Baumkurren. Innerhalb einzelner Arten kann die Größenselektion des Fanggerätes zu einer Verschiebung des Eintritts der Geschlechtsreife kommen. In den letzten Jahren werden jüngere und kleinere Schollen und Seezungen erwachsen. [4] [7] [8] [30] [637] [808] [1076] [1091]
Biologische Besonderheiten
In der Nordsee ist derzeit eine enorme Zunahme des Schollenbestandes zu beobachten. Es wird untersucht, inwieweit diese Entwicklung mit dem Nahrungsangebot korreliert und ob der Schollenbestand möglicherweise inzwischen nahrungslimitiert ist. Ergebnisse werden in den nächsten Jahren erwartet, wenn Daten aus weiteren Altersgruppen die Analysen ergänzen. Die Scholle ist an allen nordeuropäischen Küsten verbreitet, ist aber in der Nordsee besonders produktiv. Die jüngsten Stadien wachsen im Flachwasser des Wattenmeers auf und wandern dann mit zunehmender Größe ins Tiefere ab, so dass große Schollen besonders im nördlichen Teil der mittleren Nordsee zu finden sind. [33] [61] [1076] [1090]
Zusätzliche Informationen
Ein Streifen entlang der holländischen, deutschen und dänischen Küste ist für größere Baumkurrenfahrzeuge (mit mehr als 221 kW Maschinenleistung) gesperrt, um Jungfische zu schonen („Schollenbox“). Untersuchungen ergaben einen nur geringen positiven Effekt der Schollenbox auf den Bestand. Die zeitigere Abwanderung junger Schollen in tieferes, küstenfernes Wasser hat die Effektivität dieser Schutzmaßnahme stark verringert, da die Jungtiere früher in stark befischte Gebiete gelangen. [24] [61] [1076] [1077] [1090]
Zertifizierte Fischereien
Fünf Fischereien auf Nordsee-Scholle sind nach den Standards des Marine Stewardship Councils zertifiziert, keine von diesen verwendet Baumkurren. Eine weitere Fischerei ist im Zertifizierungsverfahren. [4]
Siehe:
http://fisheries.msc.org/en/fisheries/osprey-trawlers-north-sea-twin-rigged-plaice/@@view
http://fisheries.msc.org/en/fisheries/ekofish-group-north-sea-twin-rigged-otter-trawl-plaice/@@view
http://fisheries.msc.org/en/fisheries/dfpo-denmark-north-sea-plaice/@@view
http://fisheries.msc.org/en/fisheries/cvo-north-sea-plaice-and-sole/@@view
http://fisheries.msc.org/en/fisheries/dfpo-denmark-north-sea-and-skagerrak-hake-and-plaice/@@view
Soziale Aspekte
Die gemischte Plattfischfischerei in der Nordsee wird überwiegend mit kleineren Fahrzeugen durchgeführt. Diese Fischereibetriebe haben erhebliche Bedeutung für die strukturschwachen Gebiete an den Küsten der Anrainerstaaten. Die Fahrzeuge fahren unter den Flaggen der Anrainerstaaten, die Arbeitsbedingungen an Bord und die Entlohnung erfolgt daher nach deren Regeln. Hauptfangnation in der Nordsee sind die Niederlande, im Skagerrak Dänemark. [12] [13] [1076] [1090]
Marktdaten: Alle Schollenarten auf dem deutschen Markt zusammengefasst.
2022 (vorl.): Verbrauch in Deutschland: 4.602 t (2021: 4.318 t), Marktanteil (Fische, Krebse, Weichtiere): 0,4 % (2021: 0,4 %) [13] [14]
Anlandungen (in 1.000 t) | Fänge (in 1.000 t) | Laicherbiomasse (in 1.000 t) | Laicherbiomasse Zustand | Fischereiliche Sterblichkeit | Anmerkungen (insbesondere Managementplan) | Gültigkeit | |
---|---|---|---|---|---|---|---|
Bristolkanal, Südöstl. Irlands (7.f, g) | 0,5 | 0,8 | - | Biomasse nur als Index |
06/2022 - 06/2024 | ||
Irische See (7.a) | 0,2 | 0,7 | 9,9 | - |
06/2023 - 06/2024 | ||
Kattegat, Belte, Sund (21-23) | 1,4 | 2,5 | 35,1 | - |
05/2024 - 05/2025 | ||
Nordsee & Skagerrak (4, 3.a20) | 35,7 | 72,9 | 930,2 | neuer Managementplan ab 2018 |
06/2022 - 06/2023 | ||
Östlicher Kanal (7.d) | 1,6 | 7,5 | 31,8 | gemeinsamer TAC für 7.d/e |
06/2023 - 06/2024 | ||
Ostsee (24-32) | 0,5 | 0,8 | - | Laicherbiomasse & Fischereidruck nur als relative Werte |
05/2024 - 05/2025 | ||
Westlicher Kanal (7.e) | 1,4 | 1,5 | - | gemeinsamer TAC für 7.d/e, Biomasse nur als Index |
06/2022 - 06/2024 |
Klassifizierung nach dem Ansatz des höchstmöglichen nachhaltigen Dauerertrages (MSY), durch den ICES bis 2020 oder analog zu dessen Einteilung:
Symbol | Biomasse | Bewirtschaftung (fischereiliche Sterblichkeit) |
---|---|---|
innerhalb der Schwankungsbreite um den Zielwert | angemessen oder unternutzt | |
außerhalb der Schwankungsbreite um den Zielwert | übernutzt | |
Zustand unklar, Referenzpunkte nicht definiert und/oder unzureichende Daten | Zustand unklar, Referenzpunkte nicht definiert und/oder unzureichende Daten |
Autor | Jahr | Titel | Quelle | |
---|---|---|---|---|
[2] | Muus BJ, Nielsen JG | 1999 | Die Meeresfische Europas | Franckh-Kosmos Verlag |
[4] | Marine Stewardship Council (MSC) | Fisch und Meeresfrüchte aus zertifiziert nachhaltiger Fischerei | msc.org | |
[7] | Kaiser MJ, Ramsay K, Ramsay K, Richardson CA, Spence FE, Brand AR | 2000 | Chronic fishing disturbance has changed shelf sea benthic community structure | Journal of Animal Ecology 69:494-503 |
[8] | Hiddink JG, Jennings S, Kaiser MJ, Queirós AM, Duplisea DE, Piet GJ | 2006 | Cumulative impacts of seabed trawl disturbance on benthic biomass, production, and species richness in different habitats | Canadian Journal of Fisheries and Aquatic Sciences 63:721-736 |
[12] | Europäische Gemeinschaften | 2009 | Die Gemeinsame Fischereipolitik. Ein Leitfaden für Benutzer | ec.europa.eu |
[13] | Bundesanstalt für Landwirtschaft und Ernährung (BLE) | Bundesanstalt für Landwirtschaft und Ernährung (BLE) Homepage | ble.de | |
[14] | Fisch-Informationszentrum e.V. (FIZ) | Fisch-Informationszentrum e.V. Homepage | fischinfo.de | |
[24] | Pastoors MA, Rijnsdorp AD, van Beek FA | 2000 | Effects of a partially closed area in the North Sea (\"plaice box\") on stock development of plaice | ICES J Mar Sci 57:1014-1022 |
[30] | Food and Agriculture Organization (FAO) | FAO. © 2003-2010. Fisheries Topics: Technology. Fish capture technology. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 2006 15 09.[Cited 10 June 2010] | fao.org | |
[33] | Rijnsdorp AD, Peck MA, Engelhard GH, Möllmann C, Pinnegar JK | 2009 | Resolving the effect of climate change on fish populations | ICES Journal of Marine Science 66:1570-1583 |
[39] | Fischereiverwaltung, Norwegen | Online Portal des Fiskeridirektoratet (Fischereiverwaltung), Norwegen | fiskeridir.no | |
[61] | Van Keeken OA, Van Hoppe M, Grift RE, Rijnsdorp AD | 2007 | The implications of changes in the spatial distribution of juveniles for the management of North Sea plaice (Pleuronectes platessa) | Journal of Sea Research 57:187–197 |
[235] | Beek FA van, Leeuwen PI van, Rijnsdorp AD | 1990 | On the survival of plaice and sole discards in the otter-trawl and beam-trawl fisheries in the North Sea. | Netherlands Journal of Sea Research 26: 151-160 |
[631] | Europäische Union (EU) | 2013 | Verordnung (EU) Nr. 227/2013 des Europäischen Parlaments und des Rates vom 13. März 2013 zur Änderung der Verordnung (EG) Nr. 850/98 des Rates zur Erhaltung der Fischereiressourcen durch technische Maßnahmen zum Schutz von jungen Meerestieren und der Verordnung (EG) Nr. 1434/98 des Rates über die zulässige Anlandung von Hering zu industriellen Zwecken ohne Bestimmung für den unmittelbaren menschlichen Verzehr | europa.eu |
[637] | Soetaert M, Decostere A, Polet H, Verschueren B, Chiers K | 2015 | Electrotrawling: a promising alternative fishing technique warranting further exploration | Fish and Fisheries, 16.1:104–124 |
[750] | Europäische Union (EU) | 2013 | Verordnung (EU) Nr. 1380/2013 des Europäischen Parlaments und des Rates vom 11. Dezember 2013 über die Gemeinsame Fischereipolitik und zur Änderung der Verordnungen (EG) Nr. 1954/2003 und (EG) Nr. 1224/2009 des Rates sowie zur Aufhebung der Verordnungen (EG) Nr. 2371/2002 und (EG) Nr. 639/2004 des Rates und des Beschlusses 2004/585/EG des Rates | europa.eu |
[808] | James Lindholm J, Gleason M, Kline D, Clary L, Rienecke S, Cramer A, Los Huertos M | 2015 | Ecological effects of bottom trawling on the structural attributes of fish habitat in unconsolidated sediments along the central California outer continental shelf | Fishery Bulletin 113:82-96 |
[979] | Europäische Union (EU) | 2015 | VERORDNUNG (EU) 2015/812 DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 20. Mai 2015 zur Änderung der Verordnungen (EG) Nr. 850/98, (EG) Nr. 2187/2005, (EG) Nr. 1967/2006, (EG) Nr. 1098/2007, (EG) Nr. 254/2002, (EG) Nr. 2347/2002 und (EG) Nr. 1224/2009 des Rates und der Verordnungen (EU) Nr. 1379/2013 und (EU) Nr. 1380/2013 des Europäischen Parlaments und des Rates hinsichtlich der Anlandeverpflichtung und zur Aufhebung der Verordnung (EG) Nr. 1434/98 des Rates | europa.eu |
[1041] | Europäische Union (EU) | 2018 | VERORDNUNG (EU) 2018/120 DES RATES vom 23. Januar 2018 zur Festsetzung der Fangmöglichkeiten für 2018 für bestimmte Fischbestände und Bestandsgruppen in den Unionsgewässern sowie für Fischereifahrzeuge der Union in bestimmten Nicht-Unionsgewässern und zur Änderung der Verordnung (EU) 2017/127 | europa.eu |
[1056] | Europäische Union (EU) | 2017 | DELEGIERTE VERORDNUNG (EU) 2018/45 DER KOMMISSION vom 20. Oktober 2017 zur Erstellung eines Rückwurfplans für bestimmte Fischereien auf Grundfischarten in der Nordsee und in den Unionsgewässern der ICES-Division IIa für das Jahr 2018 | europa.eu |
[1065] | Europäische Union (EU) | Northern agreements, Fisheries agreements with the United Kingdom, Norway, Faroe Islands, Iceland and coastal states. | europa.eu | |
[1076] | ICES | 2018 | ICES Advice on fishing opportunities, catch and effort, Greater North Sea Ecoregion, Plaice (Pleuronectes platessa) in Subarea 4 (North Sea) and Subdivision 20 (Skagerrak) | ices.dk |
[1077] | Beare D, Rijnsdorp AD, Blaesberg M, Damm U, Egekvist J, Fock H, Kloppmann M, Röckmann C, Schroeder A, Schulze T, Tulp I, Ulrich C, van Hal R, van Kooten T, Verweij M | 2013 | Evaluating the effect of fishery closures: Lessons learnt from the Plaice Box | Journal of Sea Research 84, 49–60 |
[1084] | Europäische Union (EU) | 2018 | VERORDNUNG (EU) 2018/973 DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 4. Juli 2018 zur Festlegung eines Mehrjahresplans für Grundfischbestände in der Nordsee und für die Fischereien, die diese Bestände befischen, zur Präzisierung der Umsetzung der Pflicht zur Anlandung in der Nordsee und zur Aufhebung der Verordnungen (EG) Nr. 676/2007 und (EG) Nr. 1342/2008 des Rates | europa.eu |
[1090] | ICES | 2018 | Report of the Working Group on Assessment of Demersal Stocks in the North Sea and Skagerrak, (WGNSSK) 2018 | ices.dk |
[1091] | ICES | 2018 | The Netherlands request on the comparison of the ecological and environmental effects of pulse trawls and traditional beam trawls when exploiting the North Sea sole TAC. ICES Advice: Special Requests. Report. https://doi.org/10.17895/ices.pub.4379 | https://doi.org/10.17895/ices.pub.4379 |